Interface Specification
Open source 6LOWPAN implementation for ULE FP and PP

Contents

R 1011 oo [0 Tox £ o] o [USSR 3
1.1 AT ol0] o[TP TOUPRPPRPPN 3
1.2 HISTOMY ettt 3
1.3 REIBIBINCES ..ottt bbbt 3
1.4 Terms & ADDIeVIAtiONS ..ot 3

2 SYSEEM OVEIVIEW .ooeeiieiieiie ettt sttt snae e teenbeenree e 5
2.1 Scope of the of the BLOWPAN Libraryccccoccviieiieieiieseese e 5
2.2 Limitations of the 6LOWPAN HIBrary ..o 5
2.3 General Implementation CoNSIAErations...........ccccccveivereiiieieere e 6
2.4 TeSEINTEITACEo ettt nne s 6

3 BLBR INTEITACE ..o s 7
3.1 6LBR Specific APl FUNCHIONS.......c.cciiiieii et 7
3.2 6LBR Specific Type DefinitioNS.........ccccviiiieiiieiesiesiesiesee e 14

4 BLIN INTEITACE ...c.ei et nne s 16
4.1 B6LN Specific APT FUNCLIONSccoeiieeieiie ettt 16
4.2 6LN Specific Type DefinitioNscccooiriiieiiieie st 25

5 Example on how the 6LoWPAN Library is interfacedc........... 29

1 Introduction

1.1 Scope

The scope of this document is to define the interfaces for the 6LoOWPAN library
implementation for DECT ULE for both FP and PP.

1.2 History

Revision | Author | Issue Date Comments

0.1 THK 1-JUL-15 Initial Revision

0.2 THK 10-Jul-15 Reviewed internally by RTX (JTP and CM)
1.0 THK 13-Jul-15 Released to ULE Alliance

1.1 THK 24-Jul-15 Reviewed by HSO

1.2 THK 10-Aug-15 Remarks from ULE Alliance

1.3 JJO 06-Jan-16 Changes made during development at RTX
14 SFC 01-Mar-16 Updated interfaces.

1.3 References

[1] Title: SoW - Open source 6LoWPAN implementation for ULE FP and PP
Author: Rasmus Fossa
Location: g:\Projects\UleAlliance\Simone\Specifications\
ProductRequirements\StatementOfWork\SoW-6LoWPAN26may2015.pdf

[2] Title: Transmission of IPv6 Packets over DECT Ultra Low Energy draft-ietf-6lo-
dect-ule
Author: P. Mariager et al.
Location: https://tools.ietf.org/wg/6lo/draft-ietf-6lo-dect-ule/

[3] Title: HAN-FUN library implementation
Author: Bithium S.A.
Location: https://github.com/ULE-Alliance/hanfun.qgit

[4] Title: Testing framework for a 6LoOPWAN implementation
over DECT ULE networks
Author: Offenburg University of Applied Sciences
Location: q:\Projects\UleAlliance\Simone\Specifications\ProductRequirements
\StatementOfWork\FromOffenburg\SoW _ule_6lotest_v06.pdf

1.4 Terms & Abbreviations

6LOWPAN IPv6 over Low power Wireless Personal Area Networks
6LBR 6LoWPAN Board Router (In DECT known as FP)

https://tools.ietf.org/wg/6lo/draft-ietf-6lo-dect-ule/
http://www.bithium.com/
https://github.com/ULE-Alliance/hanfun.git

6LN
API
DECT
FP
HS
MMI
PP
DNS
ULE
RTX
swW
HW
FP

PP
ME
MM
HSO
UA

LL

6LOWPAN Node (In DECT known as PP)

Application Interface

Digital Enhanced Cordless Telephone

DECT Fixed Part (Base)

DECT Handset

Man Machine Interface / User interface

DECT Portable Part (Handset)

Domain Name System

DECT Ultra Low Energy

RTX A/S

Software

Hardware

Fixed Part

Portable Part

Management Entity

Mobility Management

Hochschule Offenburg (Offenburg University of Applied Sciences)
ULE Alliance

Link Layer, in this case the DECT ULE layer. (In some documents
the DECT ULE layer is referred as Transport Layer, TL, which
contradicts both the OSI and Internet model where the ULE layer
would be Physical/Data Link layer and network layer respectively)

RT3X

2 System Overview

The complete system consists of a DECT ULE Board Router (6LBR) with possible internet
access and a number of DECT ULE nodes (6LN) using 6LowPAN as communication
protocol, and DECT ULE as Phy/Data Link layer.

7 D @)
6LBR 6LN
N 4 N
5 < \ v,
e Border router | |\ | -= \)
© l functionality J E | IPv6 Stack
Qo a
= l IPv6 Stack MM/ ME i MM/ME
= Z | 6LOWPAN
C® | eowean |) §E l J
l Vendor specific interworking layer J l Vendor specific interworking layer J
DECT ULE DECT ULE
Data Link / Physical Layer Data Link / Physical Layer

2.1 Scope of the of the 6LOWPAN Library

The library implements the procedures defined in [2]. The library can be configured either as for
the node or for the gateway, respectively 6LN and 6LBR. It is based on the open source Contiki
implementation of 6LOWPAN for 802.15.4, but with adaption for DECT-ULE as Link Layer.

The features implemented in the protocol stack are:

IPv6 header compression HCO1. Supporting IPv6 only, UDP, TCP and ICMP. Supporting
messages: RS, RA, NS, NA, context registration, SLAAC (based on IEEE MACA48), DNS
resolver, addressing: global routable via registered context. Supported IP options: SLLAO, 6CO,
ABRO, ARO, RDNSSO

Neighbor registration cache

Unicast / multicast (relay via 6LBR)

2.2 Limitations of the 6LOWPAN library

The 6LOWPAN library only handles the IPv6 configuration and packet transmission, thus all
DECT ULE MM/Registration has to be handled elsewhere. Also power management such as
sleep/wakeup handling is outside the scope of the 6LOWPAN library.

RTX

As specified in [2] the DECT ULE 6LoWPAN library will only support star topology network
due to the nature of DECT ULE. Thus, multi-hop network is not supported and 6LN cannot
be part of the routing.

Due to DECT ULE star topology, each branch of the star is considered an individual link and
thus the 6LNs cannot directly hear one another and cannot talk to one another with link-local
addresses, however communications directly between 6LN and 6LBR can use IPv6 link-local
methodology.

2.3 General Implementation Considerations

The 6LOWPAN library is implemented in ANSI C, and will be provided as an open source
library under the 3-clause BSD-style license. The 6LoOWPAN library is based on the Contiki
6LowPAN implementation for 802.15.4, and will use the ulP stack and socket API from
Contiki.

All the messages, parameters and data types defined in this document as in the 6LoWPAN
implementation have little endian byte ordering and all the messages and data types with
multiple members are byte aligned (packed).

All functions defined in this document are implemented as non-blocking. Pointers parsed as
argument or given as return value must be considered as volatile, and responsibility of the
caller to copy data.

2.3.1Random generation of iid

Since the iid is based on random generation it is important that the random init function is
seeded with a truly random number. random_init() must be called after ule6loGI_init(..) at
the LBR and after lla_init(..) at the node.

2.4 Test Interface

In order to provide a reliable software library testing of functionalities and interfaces are
crucial. Therefore a test interface is implemented providing the necessary functions for both
doing White-box and black-box testing. The test interface conforms to the requirement setup
in [4], thereby enabling HSO to perform system test and final Acceptance testing.

3 O6LBR Interface

3.1 6LBR Specific API Functions

The 6LBR interfaces upwards to an external network and a possible application and
downwards to the DECT-ULE layer. Furthermore the 6LBR 6LoWPAN library also provides
a test interface, which interacts directly into the library. Potentially the 6LoWPAN library
could also provide a socket interface to the application. However this not included on the
6LBR side in the current version, for more option see, Socket Interface for the 6LN.

/ 6LoWPAN Library \

Only Implemented for 6LN
Network General Socket
Interface Interface Interface

I l i

Test 6LoWPAN 0S
Interface ‘ Stack Interface

l

\ Link Layer Interface ‘ /

3.1.1 General Interface

The 6LOWPAN library provides a set of general interface functions for initializing the library
and to get various parameters.

3.1.1.1 ule6loGl _init
Description: This function is called by the application/OS to initialize the 6LoOWPAN

library
Returns: ule6lo status t
Parameters: Type Name Description
const ULEAddr Pointer to IPEI of ULE device

ule6lo IPEI t *

3.1.1.2 ule6loGIl_getStatus

Description: Returns status of 6LOWPAN library, STATUS succkss for working,
otherwise not working
Returns: ule6lo status t

Parameters: None

3.1.1.3 ule6loGIl_getlp6addr

Description: Function for getting IP address

Returns: ule6lo status t

Parameters:
Type Name Description
ule6lo ipType t ipType Type of IP address
ule6lo_ipé6addr_t* ipAddr Pointer to IP address
ule6lo ipMode t mode

Mode of IP address requested

3.1.1.4 ule6loGl_addContext

Description: Function called from the application to add a context address for
compression.
Returns: ule6lo status t
Parameters:
Type Name Description
uint8_t] prefix Array of bytes for the prefix
uint8_t prefixlength Length of prefix in bytes

3.1.1.5 ule6loGIl_addMulticastAddr

Description: Function called from the application to add a multicast address to listen at.
Returns: ule6lo status t
Parameters:

Type Name Description

uleélo_ipé6addr t* ipaddress Pointer to multicast address

3.1.1.6 ule6loGl_removeMulticastAddr

Description: Function called from the application to remove a multicast address we are
currently listen at.
Returns: ule6lo status t
Parameters:
Type Name Description
ule6lo_ip6addr_t* ipaddress Pointer to multicast address

3.1.1.7 ule6loGl_setMacAddress

Description: Function to add the mac address for the LBR
Returns: none
Parameters:

Type Name Description

ule6lo macAddr t* macaddress Pointer to the mac address

RTX

3.1.2Network Interface

The 6LOWPAN library on the 6LBR interfaces upwards to the network. This interface
provide the following functions:

3.1.2.1 ule6loNI_receive

Description: This function is called by the network interface to deliver an incoming IPv6
packet to the 6LOWPAN library. The packet is on layer 2, including mac
header.

Returns: ule6lo status t

Parameters:

Type Name Description
const uint8_t * Data Pointer to IPv6 packet
uintl6_t dataLength Length of IPv6 packet

3.1.2.2 ule6loNI_send

Description: This function is called by 6LoWPAN library to deliver an outgoing I1Pv6
packet to the network. The packet is on layer 2, including mac header.

Returns: uletlo status t

Parameters:
Type Name Description
const uint8_t * data Pointer to IPv6 packet
uintlé t datalength Length of IPv6 packet

3.1.2.3 ule6loNI_echoRequest

Description: This function sends out an echo request(ICMP 128) to the network.
Returns: None
Parameters: None

RTX

3.1.3ULE Link Layer Interface
The 6LOWPAN library aligns the interface towards the LL with the interface used in the Han-

Fun library [3], in order to obtain best possible interoperability. The Han-Fun defines
following functions, where similar functions will be used for the 6LoWPAN library:

e Transport::initialize()
e Transport::receive()

e Transport::connected()
e Transport::delivered()
e Transport::send()

3.1.3.1 ule6loLLlI init

Description: Called after location registration to inform the 6LoWPAN library a new ULE
link is connected

Returns: Status
Parameters:
Type Name Description
const ULEAddr Pointer to IPEI of ULE device

ule6lo IPEI t *

3.1.3.2 ule6loLLI _receive

Description: Called from LL when LL receives a data indication and forwards data to the
6LOWPAN library.
Returns: status_t
Parameters:
Type Name Description
const uint8 t * data Pointer to ULE packet
uintleé_t dataLength Length of ULE packet
const ULEAddr Pointer to IPEI of ULE device

ule6lo IPEI t *

3.1.3.3 ule6loLLI send
Description: Called from within 6LoWPAN library when sending a ULE packages to the

LL layer
Returns: None
Parameters:
Type Name Description
const uint8 t * data Pointer to ULE packet
uintleé t datalength Length of ULE packet
const ULEAddr Pointer to IPEI of ULE device

ule6lo IPEI t *

3.1.3.4 ule6loLLI _delivered

Description: Called from LL after transmission to indicate status.

Returns: None

Parameters:
Type Name Description
ule6lo_status_t status Status of previous transmission
const ULEAddr Pointer to IPEI of ULE device

ule6lo IPEI t *

3.1.40S Interface

3.1.4.1 ule6loOS_processRun

Description: This function should be called repeatedly from the main() program / OS to
actually run the 6LOWPAN library.

Returns: None

Parameters: None

3.1.4.2 ule6loOS_getMACAddr

Description: Returns the 6LBRs MAC address. This function is hardware/ OS depended
and needs to be implemented correspondingly
Returns: ule6lo macAddr t *

Parameters: None

3.1.4.3 ule6loOS_getTimerTick

Description: Function called by the 6LoWPAN library to get the system timer tick. The
function expects a tick increment corresponding to10 ms. The function is
hardware/ OS depended and needs to be implemented correspondingly.

Returns: uint32 t

Parameters: None

3.1.5Test Interface
The following defines the test interface for the 6LBR 6LoWPAN library.

3.1.5.1 ule6loTestIn_init

Description: Initialize test interface (allocates buffers, resets packet counts and status)
and returns status
Returns: ule6lo status t

Parameters: None

RTX

3.1.5.2 ule6loTestIn_deinit

Description: Terminates test interface, including cleanup of buffer handling and deregister
call backs, returns status

Returns: ule6lo_status t

Parameters: None

3.1.5.3 ulebloTestIn_reset

Description: Performs soft reset which emulates a hardware reset, everything is cleared
including IPs and NB lists. Returns status

Returns: ule6lo status t

Parameters: None

3.1.5.4 ule6loTestin_getNbListSize

Description: Returns the length of Neighbor list.
Returns: uintlé6 t
Parameters: None

3.1.5.5 ule6loTestin_getNbList

Description: Copies specified index of the Neighbor list to specified destination
Returns: ule6lo status t
Parameters:
Type Name Description
uintle_t index Index in the neighbor list to be copied
ule6lo nbr t* nBListItem Item in neighbor list

3.1.5.6 ule6loTestin_getnofSentPacket

Description: Returns amount of sent packets on DECT interface
Returns: uint32 t
Parameters: None

3.1.5.7 ule6loTestin_getnofReceivedPacket

Description: Returns amount of received packets on DECT interface
Returns: uint32 t
Parameters: None

3.1.5.8 ule6loTestin_regRxHook
Register a hook function to be called every time an packet is received on the
wireless interface, with the raw packet as argument

Description:

Returns:
Parameters:

None
Type Name
ule6lo _hock t rxHook

3.1.5.9 ule6loTestin_regTxHook
Register a hook function to be called every time an packet is transmitted on
the wireless interface, with the raw packet as argument

Description:

Returns:
Parameters:

3.1.5.10

Description:

Returns:
Parameters:

3.1.5.11

Description:

Returns:

Parameters:

None
Type Name
ule6lo _hock t txHook

RTX

Description

Pointer callback function. This
function is called every time a packet
is received, with a pointer to the
packet and length of the packet

Description

Pointer callback function. This
function is called every time a packet
is received, with a pointer to the
packet and length of the packet

ule6loTestin_regBorderRouterRxHook

Register a hook function to be called every time an packet is received on the
border router interface, with the raw packet as argument

None
Type Name
ule6lo hock t rxHook

Description

Pointer callback function. This
function is called every time a packet
is received, with a pointer to the
packet and length of the packet

ule6loTestin_regBorderRouterTxHook

Register a hook function to be called every time an packet is transmitted on
the border router interface, with the raw packet as argument

None
Type Name
ule6lo hock t txHook

Description

Pointer callback function. This
function is called every time a packet
is received, with a pointer to the
packet and length of the packet

RTX

3.1.5.12 ule6loTestin_getnofBorderRouterSentPacket

Description: Returns amount of sent packets on border router interface
Returns: uint32 t

Parameters: None

3.1.5.13 ule6loTestin_getnofBorderRouterReceivedPacket
Description: Returns amount of received packets on border router interface
Returns: uint32 t

Parameters: None

3.2 6LBR Specific Type Definitions

3.2.1 ule6lo_status t

Description: General status type

C-syntax:

typedef enum ule6lo status_t

{
STATUS_SUCCESS = 0x00, The request completed successfully.
STATUS_NOT CONNENCTED = 0x01, Connected
STATUS ERROR = 0x02, Error
STATUS NO DEVICE = 0x03, No such device
STATUS_NO DATA = 0x04, No data is available
STATUS_NOT READY = 0x05, The device is not ready.
STATUS MAX = OxFF

} ule6lo ststaus t;

3.2.2 ule6lo_ipType_t

Description: IP address type. More migth be added

C-syntax:

typedef enum ule6lo ipType t

{
IP ADDRESS LINK LOCAL = 0x00, Link local IP address
IP_ADDRESS_GLOBAL = 0x01, Global IP address
IP_ADDRESS MAX = OxFF

} ule6lo ipType t;

3.2.3 ule6lo_macAddr_t
Description: MAC address type
C-syntax:

typedef union {

{
uint8 t ud[6];
} ule6lo_macAddr t;

3.24 ule6lo_ip6addr_t
Description: IPv6 address type
C-syntax:
typedef union ule6lo_ip6addr t {
{
uint8 t u8[l6];
uintl6 t ule[8];

}ule@o_iﬁGaddr_t;

3.25 ule6lo_IPEI t
Description: IPEI address type
C-syntax:

typedef union {
{

uint8 t id[51;
} ule6lo_IPET t;

3.2.6 ule6lo_nbr_t
Description: An entry in the neighbor cache
C-syntax:

typedef struct ule6lo_ds6 nbr {
{
ule6lo_ipaddr t ipaddr;
ule6lo IPET t lladdr;
} ule6lo_nbr t;

3.2.7 ule6lo_hook_t
Description: Hock function pointer type
C-syntax:

typedef void (*uletlo hook t) (uint8 t *data, uintl6 t datalLength)

3.2.8 ule6lo_ipMode_t

Description: IP address mode.

C-syntax:

typedef enum ule6lo ipMode t

{
IP_ADDRESS_ANY = -1, ANY
IP ADDRESS TENTATIVE =0, Tentative
IP_ADDRESS_PREFERRED =1, Preferred
IPiADDREssiDEPRECATED = 2 Deprecated

} ule6lo ipMode t;

RTX

4 6LN Interface

The 6LOWPAN library on the ULE node interface upwards to the application with a BSD like
socket interface, a DNS interface and a more general application interface and downwards to
the DECT ULE layer. Also for the node a test interface is defined together with an OS

abstraction interface.

6LoWPAN Library

N

!

Link Layer Interface

General Socket DNS
Interface Interface Interface
Test 6LoWPAN 0Ss
Interface Stack Interface

%

4.1 6LN Specific API Functions

4.1.1 General Interface
The 6LOWPAN library provides a set of general interface functions for initializing the library
and for getting various parameters.

4.1.1.1 ule6loGlI _init

Description: This function is called by the application/OS to initialize the 6LoOWPAN
library

Returns: ule6lo status t

Parameters: None

4.1.1.2 ule6bloGI_getStatus

Description: Returns status of 6LoOWPAN library, STATUS succkss for working,
otherwise not working
Returns: ule6lo status t

Parameters:

None

4.1.1.3 ule6lo_getip6addr

Description: Function for getting IP address

Returns: ule6lo status t

Parameters:
Type Name Description
ule6lo_ipType_t ipType Type of IP address
ule6lo ip6addr t* ipAddr Pointer to IP address
ule6lo ipMode t mode

Mode of IP address requested

4.1.1.4 ule6loGIl_addMulticastAddr

Description: Function to add a multicast address to listen at.

Returns: ule6lo status t

Parameters:
Type Name Description
ule6lo_ipéaddr_t* ipaddress Pointer to multicast address

4.1.1.5 ule6loGIl_removeMulticastAddr

Description: Function to remove a multicast address we are currently listen at.
Returns: ule6lo status t
Parameters:
Type Name Description
uleélo_ipé6addr t* ipaddress Pointer to multicast address

4.1.1.6 ule6bloGl_setMacAddress

Description: Function to add the mac address for the node
Returns: none
Parameters:
Type Name Description
ule6lo macAddr_ t* macaddress Pointer to the mac address

4.1.2 Socket Interface

The socket interface upwards the application uses the BSD like implementation from Contiki,
which provides both a TCP and UDP socket API. Therefore types and function definitions
corresponds to the ones used in Contiki.

RTX

4.1.2.1 tcp_socket_register

Description: This function registers a TCP socket. The function sets
up the output and input buffers for the socket and
callback pointers

Returns: Int
Parameters:
Type Name Description
struct tcp socket * S
void * Ptr
uint8_t input_databuf
int input databuf len
uint8 t output databuf
int output databuf len

tcp_socket data callback t input callback
tcp socket data callback t event callback

4.1.2.2 tcp_socket_connect

Description: Connects a TCP socket to an IP address and port number, returns -1 for
failure.
Returns: int
Parameters:
Type Name Description
struct tcp_socket* S Pointer to TCP socket
const uip_ipaddr_t* Ipaddr Destination IP
uintlé_t port port Destination port

4.1.2.3 tcp_socket_listen

Description: Listen to a TCP socket on specified port number, returns -1 for failure.
Returns: int
Parameters:

Type Name Description

struct tcp_socket* S Pointer to TCP socket

uintl6_t port port Port number

4.1.2.4 tcp_socket_unlisten

Description: Stops listing to specified TCP socket, returns -1 for failure.
Returns: int
Parameters:

Type Name Description

struct tcp_socket* S Pointer to TCP socket

RTX

4.1.2.5 tcp_socket_send

Description: Sends data on specified TCP socket, returns -1 for failure.
Returns: int
Parameters:
Type Name Description
struct tcp_socket* S Pointer to TCP socket
const uint8 t * data Pointer to data to send
int datalen Length of data

4.1.2.6 tcp_socket_send_str

Description: Sends a string on specified TCP socket, string needs to be NULL terminated,
returns -1 for failure.
Returns: int
Parameters:
Type Name Description
struct tcp_socket* S Pointer to TCP socket
const char * Str SUingtOSend

4.1.2.7 tcp_socket_close

Description: Closes connection on specified TCP socket.
Returns: int
Parameters:
Type Name Description
struct tcp_socket* S Pointer to TCP socket

4.1.2.8 tcp_socket_unregister
Description: Clean up TCP socket.

Returns: int
Parameters:
Type Name Description
struct tcp_socket* S Pointer to TCP socket

4.1.2.9 udp_socket_register

Description: This function registers the UDP socket with the system. A UDP socket must
be registered before any data can be sent or received over the socket.
Returns: int

Parameters:
Type Name Description
struct udp socket * S
void * Ptr

udp_socket data callback t input callback

4.1.2.10 udp_socket_close

Description: Closes and removes UDP socket
Returns: int
Parameters:
Type Name
struct udp socket* c

4.1.2.11 udp_socket_bind

Description
Pointer to UDP socket

Description
Pointer to UDP socket

Description: Binds UDP socket to specified port number
Returns: int
Parameters:

Type Name

struct udp socket* c

uintlé t Local port

4.1.2.12 udp_socket_connect

Port number

Description

Description: Connects UDP socket (this is optional in UDP)
Returns: int
Parameters:

Type Name

struct udp socket* c

uip ipaddr t *
uintlé t

remote addr

Local port

4.1.2.13 udp_socket_send

Description:
state” in order to know the recipient

Returns: int
Parameters:

Type Name

struct udp_ socket* c

const void * data

uintleé_t datalen

Pointer to UDP socket
Pointer to remote IP address
Port number

Sends data packet on specified UDP socket, needs to be in a “connected

Description

Pointer to UDP socket
Pointer to data to send
Length of data

RTX

4.1.2.14 udp_socket_sendto
Description: Sends data packet on specified UDP socket, to specified IP address and port

number

Returns: int

Parameters:
Type Name Description
struct udp_socket* c Pointer to UDP socket
const void * data Pointer to data to send
uintl6_t datalen Length of data
uip_ipaddr_t * remote_addr Pointer to remote IP address
uint16_t Local port Port number

4.1.3DNS Interface

The 6LOWPAN library provides a set of DNS resolver functions used to lookup a hostname
and map it to a numerical IP address. These functions are directly based on Contiki, thus types
and function definitions corresponds to the ones used in Contiki.

4.1.3.1 resolv_query

Description: Queues a name so that a question for the name will be sent out.
Returns: None
Parameters:

Type Name Description

const char * name The hostname that is to be queried

4.1.3.2 resolv_lookup

Description: Look up a hostname in the array of known hostnames.
Returns: resolv status t
Parameters:
Type Name Description
const char * name The hostname that is to be queried
uip ipaddr t ** ipaddr IP address corresponding to the
hostname

4.1.4ULE Link Layer Interface
The 6LOWPAN library aligns the interface towards the LL with the interface used in the Han-

Fun library [3], in order to obtain best possible interoperability. The Han-Fun defines
following functions, where similar function will be used for the 6LoWPAN library:

e Transport::initialize()
e Transport::receive()
e Transport::connected()

e Transport::check()
e Transport::delivered()
e Transport::send()

4.1.4.1 ule6loLLI init

Description: Called after location registration to inform the 6LOWPAN library that the
6LN is now connected to 6LBR

Returns: ule6lo status t
Parameters: Type Name Description
const ULEAddr Pointer to IPEI of ULE device

ule6lo IPEI t *

4.1.4.2 ule6loLLI receive

Description: Called from LL when LL receives a data indication and forwards data to the
6LOWPAN library.
Returns: ule6lo status t
Parameters:
Type Name Description
const uint8_t * data Pointer to ULE packet
uintlé_t dataLength Length of ULE packet
Const *ULEAddr Ipei of the sending LBR

ule6lo IPEI t

4.1.4.3 ule6loLLI_connected

Description: Called from LL to indicate status of connection, if ready to receive/transmit
data, or disconnected/offline
Returns: None
Parameters:
Type Name Description
ule6lo_status_t status Status of the connection

4.1.4.4 ule6loLLI check

Description: Called from LL before receiving data. It sends an empty string.
Returns: None
Parameters: None

4.1.4.5 ule6loLLI_send
Description: Called from the 6LOWPAN library when sending a ULE packages to the LL

layer
Returns: None
Parameters:
Type Name Description
const uint8_t * data Pointer to ULE packet

uintleé t datalength Length of ULE packet

4.1.4.6 ule6loLLI _delivered

Description: Called from LL after transmission to indicate status.
Returns: None
Parameters:
Type Name Description
ule6lo_status_t status Status of previous transmission

4.1.50S Interface

4.1.5.1 ule6loOS_processRun

Description: This function should be called repeatedly from the main() program / OS to
actually run the 6LoWPAN library.

Returns: None

Parameters: None

4.1.5.2 ule6loOS_getMACAddr

Description: Returns the 6LNs MAC address. This function is hardware/ OS depended
and needs to be implemented correspondingly
Returns: ule6lo macaddr t *

Parameters: None

4.1.5.3 ule6loOS_getTimerTick

Description: Function called by the 6LoWPAN library to get the system timer tick. The
function expects a tick increment corresponding to10 ms. The function is
hardware/ OS depended and needs to be implemented correspondingly.

Returns: uint32 t

Parameters: None

4.1.6Test Interface
The following defines the test interface for the 6LN 6LoWPAN library:

4.1.6.1 ule6loTestIn_init

Description: Initialize test interface, returns status
Returns: ule6lo status t
Parameters: None

RTX

4.1.6.2 ule6loTestIn_deinit

Description:

Returns:
Parameters:

Terminates test interface, including cleanup of buffer handling and deregister
call backs, returns status

ule6tlo status t

None

4.1.6.3 ule6loTestIn_reset

Description:

Returns:
Parameters:

Performs soft reset which emulates a hardware reset, everything is cleared
including IPs and NB lists. Returns status

ule6lo status t

None

4.1.6.4 ule6bloTestin_getNbListSize

Description:
Returns:
Parameters:

Returns the length of Neighbor list.
uintleé t
None

4.1.6.5 ule6loTestin_getNbList

Description:

Returns:
Parameters:

Copies specified index of the Neighbor list to specified destination
ule6lo status t

Type Name Description

uintlé_t index Index of the neighbor list to be
copied

ule6lo nbr t* nBListItem Item in neighbor list

4.1.6.6 ule6loTestin_getnofSentPacket

Description:

Returns:
Parameters:

Returns amount of sent packets
uint32 t
None

4.1.6.7 ule6bloTestin_getnofReceivedPacket

Description:

Returns:
Parameters:

Returns amount of received packets
uint32 t
None

RTX

4.1.6.8 ule6bloTestin_regRxHook

Description: Register a hook function to be called, every time an packet is received, with
the raw packet and length as argument
Returns: None
Parameters:
Type Name Description
ule6lo hock t rxHook Pointer callback function. This

function is called every time a packet
is received, with a pointer to the
packet and length of the packet

4.1.6.9 ule6loTestin_regTxHook

Description: Register a hook function to be called every time an packet is transmitted,
with the raw packet as argument
Returns: None
Parameters:
Type Name Description
ule6lo hock t txHook Pointer callback function. This

function is called every time a packet
is received, with a pointer to the
packet and length of the packet

4.2 6LN Specific Type Definitions

4.2.1 uleblo_status t

Description: General status type

C-syntax:

typedef enum ule6lo status_t

{
STATUS_ SUCCESS = 0x00, The request completed successfully.
STATUS_NOT CONNENCTED = 0x01, Connected
STATUS ERROR = 0x02, Error
STATUS_NO_DEVICE = 0x03, No such device
STATUS_NO DATA = 0x04, No data is available.
STATUS_NOT READY = 0x05, The device is not ready.
STATUS MAX = OxFF

} ule6lo_ststaus_t;

4.2.2 ule6lo_ipType_t

Description: IP address type. More migth be added

C-syntax:

typedef enum ule6lo ipType t

{
IP_ADDRESS_LINK_LOCAL = 0x00, Link local IP address
IP ADDRESS_ GLOBAL = 0x01, Global IP address
IP_ADDRESS MAX = OxFF

} ule6lo ipType t;

4.2.3 ule6lo_macAddr_t
Description: MAC address type
C-syntax:

typedef union {

{
uint8 t ug8[6];
} ule6lo_macAddr t;

4.2.4 ule6lo_ip6addr_t
Description: IPv6 address type
C-syntax:
typedef union ule6lo_ip6baddr t {
{
uint8 t u8[l6];
uintl6e t ul6[8];

} ule6loii56addr_t ;

4.2.5 ule6lo_IPEI t
Description: IPEI address type
C-syntax:

typedef union {
{

uint8 t id[5];
} ule6lo_IPET t;

4.2.6 ule6lo_hook_t
Description: Hook function pointer type
C-syntax:

typedef void (*ule6lo hook t) (uint8 t *data, uintlé t dataLength)

4.2.7 tcp_socket_event_callback_t
Description: TCP event callback function
C-syntax:

typedef enum {
TCP_SOCKET_CONNECTED,
TCP_SOCKET CLOSED,
TCP_SOCKET TIMEDOUT,
TCP_SOCKET_ABORTED,
TCP_SOCKET DATA SENT
} tcp_socket event t;

Typedef void (* tcp socket event callback t)
(

struct tcp socket * S,
void * Ptr,
tcp socket event t Event,

)7

4.2.8 udp_socket

Description: UDP socket type
C-syntax:
struct udp socket

{
udp_ socket input callback t input callback;

void * ptr
struct process * o)
Struct uip conn * c
b7
4.2.9 udp_socket_input_callback_t
Description: A UDP socket callback function
C-syntax:
typedef void (* udp socket input callback t)
[
struct udp socket * c,
void * Ptr,
const uip ipaddr t * source_ addr,
uintleé_t source_port,
const uip_ ipaddr_t * dest_addr,
uintlé_t dest_port,
const uint8 t * input_data ptr,

int input_data len,

4.2.10 resolv_status_t
Description: resolv status type
C-syntax:

typedef uint8 t resolv_status_ t;
enum

{

RESOLV_STATUS CACHED = 0x00,
RESOLV_STATUS UNCACHED ,
RESOLV_STATUS EXPIRED ,
RESOLV_STATUS NOT FOUND ,
RESOLV_STATUS RESOLVING ,
RESOLV_STATUS ERROR ,

4.2.11 ule6lo_ipMode_t

Description: IP address mode.

C-syntax:

typedef enum ule6lo ipMode t

{
IP ADDRESS ANY = -1,
IP_ADDRESS TENTATIVE =0,
IP_ADDRESS PREFERRED =1,
IP ADDRESS DEPRECATED =2

} ule6lo ipMode t;

Hostname is fresh and usable. This response is cached and will eventually
expire to RESOLV_STATUS_EXPIRED.

Hostname was not found in the cache. Use resolv_query() to look it up.
Hostname was found, but it's status has expired. The address returned
should not be used. Use resolv_query() to freshen it up.

The server has returned a not-found response for this domain name. This
response is cached for the period described in the server. You may issue a
new query at any time using resolv_query(), but you will generally want
to wait until this domain's status becomes
RESOLV_STATUS_EXPIRED.

This hostname is in the process of being resolved. Try again soon.

Some sort of server error was encountered while trying to look up this
record. This response is cached and will eventually expire to
RESOLV_STATUS_EXPIRED.

ANY
Tentative
Preferred
Deprecated

RTX

5 Example on how the 6LOWPAN Library is interfaced

Cloud
ayyz”

Internet

6LoWPAN LIB

|_receive

—

6LoWPAN LIB
—

_register

“Reg/init”

